QUALITY ASSESSMENT OF THE PORTUGUESE PUBLIC HOSPITALS USING A MULTIPLE CRITERIA DECISION AIDING APPROACH

hSNS Workshop 2021

26.02.2021 Ana Sara Costa

THE AUTHORS

António Rocha

Ana Sara Costa

Instituto Superior Técnico - Universidade de Lisboa

Diogo Cunha Ferreira José Rui Figueira Rui Cunha Marques

- 1. Quality in Healthcare Services 2. Constructing the Decision Model 3. Software, Results and Discussion 4. Final Remarks

CONTENTS

1. QUALITY IN HEALTHCARE SERVICES

It is vital to guarantee universal access to healthcare and to ensure that it follows safe and appropriate guidelines to provide quality health care (Gostin & Friedman, 2015), particularly nowadays with the COVID-19 (Sars-Cov-2) pandemic threatening our way of life and emphasizing pre-existing systemic issues (Okereke et al., 2020)

SERVICE'S QUALITY

to provide universal, equal, and tendentiously free care

Political and economic events have had an impact on the SNS

Healthcare policies focused on improving efficiency and reducing costs

The Portuguese National Health Service (SNS) was created in 1979

Compromise infrastructures and equipment, and, above all, the service's quality

OUR APPROACH

Multiple Criteria Decision Aiding Approach (MCDA)

ELECTRE TRI-C/nC: (Almeida-Dias et al., 2010; 2012) Quality assessment of the Portuguese public hospitals

2. CONSTRUCTING THE DECISION MODEL

DECISION AIDING PROCESS **Overview**

PROBLEM FORMULATION

PREFERENCES

DECISION MODEL

OUTPUT

FINAL RESULTS

- Problem design by the analyst and the decision maker (DM)
- Elicitation of the preference parameters of ELECTRE TRI-C/nC
- Building decision models with data and parameters

- Results output by using software (DecSpace & MCDA-Laval)
- Robustness analysis and validation of the results by the DM

DECISION MAKER

A former expert from the Ministry of Health, who possesses know-how in the healthcare sector and performance assessment

PORTUGUESE PUBLIC HOSPITALS

CRITERIA' SCALES

Active intervention of the DM
A qualitative scale for each criterion
Imperfect data characteristics and arbitrariness
No systematic compensation

An innovative approach for constructing the criteria' scales

CONSTRUCTING SCALES

- 1. Define the levels for all the subcriteria
- 2. For each criterion, apply ELECTRE TRI-C to assess the hospitals according to the subcriteria
- 3. Convert the categories assessed in the previous step to each hospital to a level between 1 and 5
- on an ordinal scale (unless the method had assessed an interval of categories) -> C1 -> level 1

Lower-level view vs Upper-level view

CATEGORIES

SCALE OF G2

Reference hospitais for g2 - Care Appropriateness

Catagory	Derformance	Reference	Subcriterion					
Category	renormance	hospital	$g_{2,1}$	$g_{2,5}$				
C_5	Very Good	b_5^1	90.00	5.00	2.70	90.00	0.50	
C_4	Good	b_4^1	85.00	6.50	3.20	80.00	0.60	
C_3	Neutral	b_3^1	80.00	7.40	3.70	50.00	0.90	
C_2	Poor	$b_2^{\overline{1}}$	75.00	8.30	4.50	30.00	1.10	
C_1	Very Poor	$b_1^{\overline{1}}$	70.00	9.80	5.20	20.00	1.40	

Conversion from categories to viewpoint in 2018

nital	Cate	egory	Viewpoint				
pitai	Minimum	Maximum	Lower-level	Upper-level			
	C_3	C_4	3	4			
	C_1	C_2	1	2			
	C_4	C_4	4	4			

ELECTRE TRI-NC DATA

Criteria G= $\{g_1, \dots, g_j \dots, g_n\}$

Subset of reference actions $B_h = \{b_h^r, r = 1 \dots, m_h\}$

PERFORMANCE TABLES

Performance tables for the years of 2017 and 2018 and respective viewpoints

					20	17									20	18				
Hospital		Lov	ver-le	evel			Up	per-le	evel			Lov	ver-le	evel			Up	per-l	evel	
	g_1	g_2	g_3	g_4	<u>g</u> 5	g_1	g_2	g_3	g_4	g_5	g_1	g_2	g_3	g_4	g_5	g_1	g_2	g_3	g_4	g_5
a_1	2	3	4	2	2	3	4	4	2	3	3	3	4	3	2	3	4	4	4	3
a_2	4	3	5	1	3	5	4	5	1	3	4	3	5	2	3	5	4	5	2	3
a_3	2	2	3	3	3	2	2	3	3	4	3	1	4	3	3	3	2	4	3	3
a_4	2	3	5	4	2	2	3	5	4	2	2	4	5	3	2	2	4	5	3	2
a_5	3	3	4	2	4	3	4	4	2	4	3	4	3	3	3	3	4	4	3	3
	•															•				
									•••	•										
<i>d</i>	1.2	2	2	4	2	2	2	2	4	4	2	2	2	4	2	9	2	2	4	2
a20	2	2	3	4	3	2	2	3	4	3	2	3	Ã	4	3	2	3	Ã	4	3
a21	2	5	9	9	9	2	5	9	9	9	2	9	9	9	9	9	4	9	9	9
a22	0		0	0 9	0 9	0	0 0	0 0	0 5	0 9	0 0	3	- 2	3	0 9	0 9	4	- 2	3	3
a_{23}	3	2	2	3	3	3	3	2	0	3	2	4	3	4	3	3	4	3	4	4
a_{24}	2	3	3	3	3	2	3	3	5	3	3	5	3	5	3	3	5	3	5	3
a_{25}	2	2	3	4	3	3	2	3	4	3	2	2	2	3	3	3	2	2	4	4

PREFERENCE PARAMETERS

Set of reference hospitals per category

Category	Performance	Reference Criterie		on			
Category	i chomanee	hospital	g_1	g_2	g_3	g_4	g_5
		b_5^1	5	5	5	5	5
C_5	Very Good	b_5^2	5	4	5	4	5
		b_5^3	5	4	5	4	4
		b_4^1	4	4	5	4	5
C_4	Good	b_4^2	4	4	5	4	4
		b_4^3	4	4	4	4	4
C_3	Neutral	b_3^1	4	4	4	3	4
C	Poor	b_2^1	3	3	4	3	4
\mathbb{C}_2		b_2^2	3	3	3	3	3
		b_1^1	3	2	3	2	3
C_1	Very Poor	or b_1^2 2 2 2	2	2	3		
		b_1^3	2	2	2	1	3

Weights of the criteria

	g_1	g_2	g_3	g_4	g_5
v	Ø	2	3	Ø	Ø

Credibility |eve| = 0,6

3. SOFTWARE, RESULTS AND DISCUSSION

DECSPACE

Homepage

It provides similar features to the ones of other MCDA solutions that already exist, but it offers those features together into a standalone web-based service available for anyone

USING DECSPACE

TEACHING It can be used for teaching purposes related to MCDA and other areas RESEARCH It is very useful in research works for various areas of application

PROFESSIONAL It is suitable for professional use in engineering and management

DCM-SRF

Deck of Cards Method -Simos-Roy-Figueira (DCM-SRF) permits to determine the weights of criteria mainly based on a cards ranking constructed by the DM using criteria cards and blank cards (+ ratio z) (Figueira & Roy, 2002)

RESULTS - LOWER LEVEL VIEW

RESULTS - UPPER LEVEL VIEW

MCDA-ULaval v0.6 Multicriteria Decisions | Décisions Multi-Critères

RESULTS OVERVIEW

Interval of category		20	17	20)18
Min.	Max.	Lower-level view	Upper-level view	Lower-level view	Upper-level view
C_1	C_1	11 (44%)	4 (16%)	7 (28%)	4 (16%)
C_1	C_2	5(20%)	5(20%)	6 (24%)	3(12%)
C_2	C_2	7 (28%)	10 (40%)	7 (28%)	8 (32%)
C_2	C_3	1 (4%)	3(12%)	2 (8%)	4 (16%)
C_2	C_4	0(0%)	2(8%)	0(0%)	1 (4%)
C_3	C_3	0 (0%)	0(0%)	3 (12%)	2 (8%)
C_3	C_4	1 (4%)	0(0%)	0 (0%)	2 (8%)
C_4	C_4	0 (0%)	0(0%)	0 (0%)	0 (0%)
C_4	C_5	0 (0%)	1 (4%)	0 (0%)	1 (4%)
C_5	C_5	0(0%)	0(0%)	0 (0%)	0 (0%)

DISCUSSION

- Assignments in 2018 tend to be better than in 2017
- In general, there are better assignments in the upper-level view
- There was no assignments to C5
- The majority of hospitals were assigned to C1 and C2
- a2 Centro Hospitalar Póvoa de Varzim/Vila do Conde is always the best 📑
- a24 Centro Hospitalar Universitário do Porto improved from 2017 to 2018

T III T

ROBUSTNESS ANALYSIS

SCENARIO ANALYSIS

1. Changing the credibility level

2. Changing the weights

3. Changing both the credibility level and weights

4. FINAL REMARKS

FINAL REMARKS

OUTCOMES	CONTRIBU
Assignment of the Portuguese Public	A robust d
Hospitals to predefined categories	hospitals'
ordered by overall quality level	for consct
IMPLICATIONS	FUTURE W
Potential application to healthcare policy	Considering
and hospital funding in the SNS	(e.g., about

UTIONS

ecision model for assessing quality using a novel approach ructing criteria' scales

ORK

- other information in model
- the infrastructures)

Almeida-Dias, J., Figueira, J. R., & Roy, B. (2010). ELECTRE TRI-C: A multiple criteria sorting method based on characteristic reference actions. European Journal of Operational Research, 204, 565-580.

Almeida-Dias, J., Figueira, J. R., & Roy, B. (2012). A multiple criteria sorting method where each category is characterized by several reference actions: The ELECTRE TRI-nC method. European Journal of Operational Research, 217, 567-579.

Figueira, J. R., & Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure. European Journal of Operational Research, 139, 317-326.

Gostin, L. O., & Friedman, E. A. (2015). The Sustainable Development Goals: One-Health in the World's Development Agenda. JAMA 314, 2621-2622.

Okereke, M., Ukor, N. A., Adebisi, Y. A., Ogunkola, I. O., Favour Iyagbaye, E., Adiela Owhor, G., & Lucero-Prisno III, D. E. (2020). Impact of COVID-19 on access to healthcare in low- and middleincome countries: Current evidence and future recommendations. The International Journal of Health Planning and Management, 36(1), 13-17.

THANK YOU! Obrigada!!!

QUESTIONS & COMMENTS

ANA SARA COSTA anasaracosta@tecnico.ulisboa.pt

